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BodyTrak: Inferring Full-body Poses from Body Silhouettes using a Wristband

ANONYMOUS AUTHOR(S)

In this paper, we present BodyTrak, the first smart wristband that can estimate the full body poses in 3D. It uses miniature cameras
mounted on the wrist to capture the body silhouettes, which are learned by a customized deep learning model to estimate the 3D
positions of 14 joints on arms, legs, torso, and head. We conducted a user study with 9 participants in which each participant performed
12 daily activities such as walking, sitting, or exercising, in varying scenarios (wearing different clothes, outdoors/indoors). The results
show that our system can infer the full body pose (3D positions of 14 joints) with an average error of 6.89 cm and 6.34 cm, using just
one camera and four cameras mounted on the wrist respectively. Based on the results, we discuss the possible application, challenges,
and limitations to deploy our system in real-world scenarios.

CCS Concepts: • Computer systems organization → Embedded systems; Redundancy; Robotics; • Networks → Network relia-
bility.
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1 INTRODUCTION

Body pose estimation is becoming increasingly important in many fields such as health (e.g., physiology of individuals
with physical disorders such as scoliosis and Parkinson’s [4][38]), the gaming industry, sports analysis, and even
communication studies which can help us understand how we interact with one another through our body language[45]
[11] [18]. Previous research has used methods such as external sensors placed within a room, depth cameras. It works for
some applications, e.g., motion games at home. However, these solutions are limited in terms of mobility, not allowing
reconstructing the body in the field.

To address these mobility issues, researchers have used wearable solutions to estimate body poses. Most of these
systems require the users to wear multiple sensors (e.g., IMU) on the body [37, 41], which are less practical in the real-
world setting. The recent advancements show that using a single form factor, such as a chest-mounted camera[20], a hand-
held smartphone[2] or a hat-mounted camera,[25], can also estimate full-body poses with encouraging performances.
However, these form factors (chest-mount or hat) may not be immediately acceptable or convenient for users to be
worn in different daily activities. For instance, chest-mounted devices such as GoPro are acceptable for a group of users
in specific contexts. However, it is still not yet be acceptable to be worn on a daily basis for many. Therefore, in the
future eco-system of wearables, it is essential to offer users a variety of wearable sensing technologies to track body
poses to decide the technology based on the context.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
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redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
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Fig. 1. Body Pose Estimation results using BodyTrak. In the first row, the user is performing an activity, and depth camera is displaying
the body posture using skeletal points. The second row of images represent the set of four images captured by each camera on the
wristband and their accompanying segmented images. The black in the segmented images is the background and the blue is marked
as the user’s body. The ground truth rows signify the skeletal figure in correspondence with the depth camera. In the Prediction row
displays predictive body posture using the images input through the wristband cameras.

Considering this form factor limitation, we explore the feasibility of estimating the full-body pose using a wristband
in this paper. Compared to other form factors like the chest-mounted device or hat, the wristband is arguably a more
common form factor and is currently widely used. Thus, we form the research question of the paper as:

• Is it possible to estimate the full body poses by only using a wrist-mounted device?

To answer this research question, we developed BodyTrak, the first AI-powered wrist-mounted sensing technology
that can estimate full body poses. It uses cameras on the wrist to capture images of the body. Although these images
only contain incomplete body parts (body silhouettes), they are unique and highly informative depending on the
arm movements and body poses. Therefore, we derive the working hypothesis of BodyTrak: The incomplete body

parts/silhouettes captured by wrist-mounted cameras can be highly informative to infer the full body poses.
To verify the feasibility of working hypothesis, we developed a wristband with four miniature RGB cameras. This

prototype was used to conduct a user study where we had 9 participants perform a list of daily activities or exercises
involving a wide variety of body movements. The results showed that BodyTrak could estimate the full-body pose,
including the 3D positions of 14 body joints, with an average accuracy of 6.9 cm and 6.34 cm using one camera and four
cameras, respectively. Furthermore, we also conducted additional studies to evaluate how BodyTrak would perform in
different real-world scenarios (indoors, outdoors, wearing a different shirt, remounting the device). Based on the results,
we discussed the opportunities and challenges of applying BodyTrak in real-world applications.

The contributions of the paper are:

• The first wrist-mounted device that can estimate the full body poses.
• A customized deep learning pipeline which can infer the 3D positions of 14 body joints (full body poses) from
the image of body silhouettes/imcomplete body parts captured by wrist-mounted cameras.

• A user study with 9 participants to evaluate the performance of BodyTrak when the user performs different
activities under different scenarios.
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• A discussion on the opportunities and challenges of applying BodyTrak on the future wrist-mounted devices in
real-world applications.

2 RELATEDWORK

Our work is to estimate full body poses in 3D using a wrist band with cameras. In this section, we first review the
literature related to estimating 3D full-body poses using Non-wearable and wearable-based technologies. Then, we
discuss the previous research using wrist-mounted cameras to estimate body poses.

2.1 3D Full Body Reconstruction using Non-wearable Devices

Applying external devices is one of the most typical methods of capturing body posture with either passive or active
sensing technology. Devices with high portability and compact dimensions, such as the Microsoft Kinect [10] and Intel
RealSense [9], have proved their effectiveness in motion capture. Due to the advances of the RGBD camera, segmentation
of objects from backgrounds and the continuous tracking of body movement can be accomplished by these devices
without the use of any markers, which are commonly used for 3D animation[14]. In commercial high-quality motion
capture systems such as OptiTrack [21] and Vicon [32], several retroreflective markers are usually placed on the rigid
body where external cameras can easily capture them. Similarly, fiducials are also used as a standard marker in optical
measurement [30] while PhaseSpace [23] and VIVE [44] apply active markers. Thanks to the flourishing of computer
vision and machine learning, researchers are able to reconstruct human poses simply using RGB images, which is
present in works such as DensePose [13], PoseNet [26], and OpenPose [6]. In addition to utilizing cameras, projects
utilizing acoustics sensors [1, 12], RF [50] and magnetic fields [22] have also demonstrated impressive performances in
human pose estimation.

However, non-wearable devices with either optical or other sensors are sometimes not practical or even unavailable
in some scenarios. Systems requiring markers typically involve a specific working space, while other devices like
the Kinect requires users to perform in front of the device. These limitations restrict the user’s mobility and their
applications in real world scenarios.

2.2 3D Full Body Reconstruction using Wearable Devices

Work Position of
the Sensor Body Estimation Sensor Tracking Moment Activity Accuracy

xR-EgoPose[43] VR headset Full body Fish-eye camera Always on 9 5.82cm
Mo2cap2[49] Cap-mounted Full body Fish-eye camera Always on 8 6.14cm
Monoeye[19] Chest Full body Fish-eye camera Always on 3 5.0cm
You2Me[34] Chest Full body GoPro camera Always on 4 8.6cm

Pose-on-the-Go
[2] Smart Phone Full body Depth camera

IMU
When holding
the phone 6 <25cm

Real-time arm[29] Wrist An upper arm IMUs Always on 17 10.53cm for elbow
12.94cm for wrist

I am a smartwatch
[40] Wrist An upper arm IMU Always on 10 9.2cm

BodyTrak Wrist Full body RGB cameras Always on 13 6.34cm
Table 1. Comparison with Other Previous work.
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To overcome the constraints of the external non-wearable devices, researchers developed wearable technology with
sensors like Internal measuring units (IMU) to reconstruct a 3D body [37, 41]. Mo2cap2 [49] tracks human pose with a
cap-wearable fish eye camera pointing downwards. Similarly, xR-EgoPose [43] applies an egocentric fish-eye camera
on the VR headset enables 3D avatar motion in VR environment. Other examples like Mono-eye [19] and You2Me [34]
wears a single fish-eye chest mounted camera. In contrast to prior systems requiring devices wearing on the body or
placing outside, Post-on-the-Go [2] employing iPhone with sensor fusion tracks body posture while users hold the
phone in hand. However the above form factor such as chest-mount, hat, or holding smartphone, may not always be
available to users in daily activities. Thus, it is important for the future ecosystem of wearable computers to have a
variety of form factors such that the users can decides the wearable technology based on the applications or contexts.

Although smartwatches /wristbands are the most popular commodity wearable products on the market, we have not
seen any technology that can estimate the full body pose using a single wrist-mounted form factor. Thus, BodyTrak is
the first wrist-mounted wearable sensing technology that can track the full body poses. To facilitate the comparison
between BodyTrak and other work, we present Table 1, where we listed the key settings and performance of related
wearable-based pose tracking system.

2.3 Wrist-mounted cameras for activity recognition

It is becoming increasingly common to see cameras integrated into commercial wearable watches, which allow for easy
communication and the capture of active moments. For example, WristCam, the first-ever camera for Apple Watch, is
a wearable, unobtrusive smartwatch with dual cameras1. Reserach projets have also explored using wrist-mounted
cameras to recognize hand poses[16, 27] or emotional state [36]. However, to the best of our knowledge, we have not
seen any prior work that explored using a single wrist-mounted device to estimate the full-body poses. In other words,
BodyTrak is the first wearable technology that explores estimating full body poses on a wrist-mounted form factor.

3 THEORY OF OPERATION

Fig. 2. Research Idea. The body silhouettes images captured by the camera on the wrist are unique from each human motion. We
believe that these different images are highly informative to infer full-body poses.

Under conventional CV methods for 3D full-body posture, a full-body image is needed to estimate body posture.
However, it is impossible to capture the full body images with wrist-mounted cameras due to constraints such as the
limited angles of view and occlusion problems. However, unlike the conventional CVmethod, we believe that incomplete
body parts in the images can also be highly informative to infer the complete body poses. In other words, how the body
parts were occluded provides rich information on the body pose. We observed that the partial body images/silhouettes
1https://www.wristcam.com/
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Fig. 3. Design Space. A matrix of 12 body movements that cover the full range of body movements.

captured from the wrist are unique and different on different body poses, as shown in Fig. 2. Furthermore, recent
work has already demonstrated that using partial body images/silhouettes to estimate hand poses[17, 48] and facial
expressions [7, 8]. Therefore, we believe that it is possible for AI to learn the body silhouettes captured from the wrist
to infer the full body poses on the arm, legs, torso, and head.

4 DESIGN SPACE OF BODY POSES

To verify the idea of BodyTrak, the first step is to consider the design space of body poses so that the design and
evaluation of BodyTrak would include the full range of all body movements. Based on human movement, the two main
factors we considered in our design space are upper body movement and lower body movement.

• Upper Body Movement: Since our arm moves in various ways, we have divided upper arm movement into two
categories: one arm and two arm movements. Arm movement is separated into the left arm or the right arm. This
is to account for users wearing the wristband on one side of their arm. In this case, only one arm is moving in the
activity, either the right or the left. Also, we divided the two-arm movements into two dimensions: synchronous
and asynchronous movements of both arms in which both arms are in motion at the same time or each arm is in
motion at a different time.

• Lower BodyMovement:We have divided lower bodymovement into nomovement andmovements. Nomovement
(noted as Movement (x) in Fig. 3) means that the user is standing. Movement (noted as Movement (O) in fig. 3)
refers to the motion of the legs.

Based on these considerations, we created the 4 × two design spaces (see. Figure 3), allowing BodyTrak to explore
various body postures. In each category, we found daily activities from previous 3D full-body reconstruction works
[20] (walking, boxing, kicking, sitting) and common daily exercises (e.g., squat, front raise). This design space ensures

5
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Fig. 4. System Overview of BodyTrak. The prototype is put onto the user. They then perform 13 activities. While the activities are
being performed the cameras are capturing images of the body. These images are then segmented and fed into a CNN which outputs
an estimated body posture for each activity, using 14 skeleton points.

that users perform the full breadth of human motion by completing at least one activity from each category. Finally,
we chose 13 activities, including standing to evaluate our system. Standing was included to account for the occlusion
gestures as mentioned in section 3 (e.g., Right shoulder press and lateral raise).

5 SYSTEM DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of PoseTrak, which consists of four parts: the hardware
prototype, image segmentation and camera setting, 3D skeleton as the ground-truth for a full-body pose, and the
customized deep learning pipeline (see. Fig. 5), as detailed below.

5.1 Prototype

5.1.1 Hardware. Our hardware prototype consists of three main components, the wristband with four RGB cameras,
a depth camera for tracking groundtruth of 3D body poses, and a PC for data processing. The 3D printed wristband
houses four miniature RGB cameras (i.e. b006605 RGB Arducam) with a dimension of 60mm × 11.5mm × 9.5mm and a
fixed FOV of 160°. Each camera is connected to a Raspberry Pi Zero using cables, as shown in figure 5. An external
power bank powers the Raspberry Pi and cameras. These cameras will capture images with the resolution of 400 x 400
at 5 FPS, which are sent and saved on a laptop via WiFi.

The Raspberry Pi Zero and battery were placed in a 3D printed box measured at 168mm × 72mm × 25mm and
weighing in at 350g, which are held in the user’s hand during the study. We asked the participants to hold the data
collection device in hand instead of wearing them on the body (e.g., armband) because these devices can occlude the
body images observed from the wrist if worn on the body. In order to simulate a real-world scenario where the camera
is embedded into a smartwatch, we decided to ask the participants to hold the Raspberry Pi Zero in hand so that the
cameras on the wrist would not capture any part of the device. All participants reported that our prototype did not
affect their movement during the experiments.

Lastly, we used Intel’s RealSense depth camera2 to record the ground truth of the 3D human body pose. The
application, i.e., Skeleton Tracking SDK for Intel® RealSense™ Depth, was employed to get 18 skeleton points on the
body, such as the shoulder, elbow, and knees (See Fig. 5). A PC was used for data processing. We built an Ethernet
network with high bandwidth between the Raspberry Pi boards and the PC to guarantee transmission robustness
and avoid frame dropping. By using timestamps, we synchronized the depth camera images relative to those of the
Raspberry Pis.

2https://www.intelrealsense.com/depth-camera-d435/
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Fig. 5. Implementation and Hardwear Setting. The full prototype consists of the wristband, the Intel RealSense Depth Camera, and a
PC. When setting up the prototype for data collection, the cameras are mounted onto the velcro strap which is then wrapped around
the participant’s wrist. The participant then holds the 3D box which holds the raspberry pi boards and the accompanying power
sources.

5.2 Body Segmentation and Camera Setting

5.2.1 Segmentation technique. The idea of BodyTrak is to use a deep learning model to learn the partial body/silhouette
images to estimate 3D full body pose. The critical first step is to segment the body silhouette from the captured images.
Many previous machine learning systems have demonstrated reliable performances on this task for human body
segmentation [31, 33]. However, it was challenging for existing body segmentation techniques to segment our partial
body parts from the background. This is because when using existing techniques, body parts such as the head or
torso serve as reference points to infer a body part or position. When conducting segmentation using partial body
images, we might lose these fundamental body parts as reference points, as shown in Fig. 2. After applying several
body segmentation techniques such as PixelLib 3, Pose2Seg4, and CDCL [28], we decided to use a well-known pre-
trained model named FCN-ResNet101 [31]5 as our image semantic segmentation method, which demonstrated reliable
performances in our experiments (e.g., different cloth and indoor/outdoor setting) as shown in Fig 6.

To use FCN-ResNet101, we first normalize the size of our input images to 400 × 400. Then, we segment the human
body from the background using FCN-ResNet101, where we decides whether each pixel belongs to the background or
the human body.

Although the segmentation was relatively stable, it is not perfect. We found it occasionally miss-segmented body
parts. In our experiment, we used all images regardless of the segmentation results to train and test the performance on

3https://github.com/ayoolaolafenwa/PixelLib
4https://github.com/erezposner/Pose2Seg
5https://pytorch.org/hub/pytorch_vision_fcn_resnet101/

Fig. 6. Body Segmentation. The images provided ensure that we can visually distinguish between properly and poorly segmented
images. The blue in the segmented images represent the user’s body and the black indicates the background. In image (b) the user is
performing a different posture and wearing different clothing. In the outdoor environment (c), segmented images are displayed when
the user is performing the activity in an outdoor setting.
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BodyTrak. Therefore, if the body segmentation in the images improves, the performance of BodyTrak can potentially
be even better. What we present in this paper is just a baseline.

Fig. 7. Camera Setting. In this figure is the camera arrangement, along with their angular measurements. The x plane runs horizontally
across the wrist, the y plane runs vertically across the wrist, and the z plane runs away from the wrist. In blue is the rotational degree
of the camera on the y-z plane. In blue is rotational degree of the camera on the x-y plane. In these other images the participant
demonstrates how the wristband is held and the directions in which the cameras point.

5.2.2 Camera Setting: Position Arrangement. An optimized camera setting (number, position and orientation) is the key
for this system to accurately estimate full body posture. By experimenting with our research team, we aimed to find the
best camera setting to capture maximum information on body poses.

After conducting a pilot study on segmentation, we determined the camera settings using the following criteria.

• In order to reliably segment the body, cameras are better to be set pointing to the head or torso in combination
with other body parts such as arm and leg.

• Lower body images are important to compliment the information we get from the upper body. We need to
arrange the cameras to capture this part of the body.

Based on these criteria, we investigated the camera arrangement considering 1). the range of arm movement such as
holding up or folding the arm. 2). the natural rotation of the wrist reaching up to 150° [39] and 3) our cameras’ FoV is
160°. As a result, the first camera (See. Fig. 7. C#1) is empirically placed on the side of the arm at 60° perpendicular to
the arm. This ensures that we can capture more body information, including head pose, when users stretch their arms
without folding. The other three cameras (see. Fig. 7 C#2, C#3, and C#4) are positioned side by side on the inner part of
the arm considering the rotation of the wrist when the arm is folded. The positions and arrangement were empirically
decided based on the preliminary experiments on researchers. Here, we titled and rotated the cameras as seen in Fig. 7
(the tilt of cameras is marked in blue and rotation in red). The purpose of titling the cameras, from 30° to 60°, is to make
each camera pointing more towards the body. In addition, all three cameras excepting C#1 were rotated from 45° to 60°,
which was helpful to capture the torso with lower/upper body for proper segmentation. In Section 7.1, we will discuss
the impact of camera settings on the performance.

5.3 Ground Truth Acquisition

We used the depth camera (Intel RealSense) and associated body Skeleton tracking application to capture the groundtruth
of body poses, including 3D positions of 18 body joints on eyes, ears, nose, arms, torso, and legs Fig.8(a). We exclude

8



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

BodyTrak: Inferring Full-body Poses from Body Silhouettes using a Wristband Woodstock ’18, June 03–05, 2018, Woodstock, NY

Fig. 8. Ground Truth Acquisition. Image (a) represents the ground truth that is displayed when using the RealSense depth camera. In
image, (b) we depict the normalization values for each body part. In figure (c) the image displays the normalized skeleton after it is
passed through the deep learning pipeline.

eyes and ears with only the nose point representing head position. Thus, we have 14 skeleton points as ground-truth
for the full body poses. As each person has a different height and body size, we normalized skeleton information before
feeding it into a deep learning model. As shown in Fig. 8(c), we normalized the skeleton so that the shoulder is parallel
to the 𝑌𝑍 plane and the body center (chest joint) is at the origin of the coordinate. We then normalized the length
of the body with values as shown in Fig.8(b). Here we label the coordinate of joint 𝑗 , the coordinate 𝑥,𝑦, 𝑧 of 𝑗 after
normalization is calculated with the equation:

Normalized𝑗,𝑝 = NormLength𝑖 ×
Raw𝑗,𝑝

RawLength𝑖
+ Normalized𝑗−1,𝑝

where 𝑝 equal to either 𝑥 , 𝑦, or 𝑧, RawLength𝑖 and NormLength𝑖 is the length of the corresponding trunk before and
after normalization, and Normalized𝑗−1,𝑝 is the coordinate of the last normalized joint, where we start normalization
from Chest. For example, with raw coordinate 𝑧 of left wrist,

Normalizedleft wrist,𝑧 = 1 ×
Rawleft wrist,𝑧

RawLengthleft wrist to left elbow
+ Normalizedleft elbow,𝑧

5.4 Deep Learning Pipeline

5.4.1 Network Architecture. Convolutional neural networks have demonstrated promising performance in dealing
with 2D image tasks such as classification, retrieval, and segmentation as compared with other traditional machine
learning algorithms [15]. Another significant reason for attempting to solve this problem through a deep learning model
is that mapping partial body images to locomotion is not straightforward. Directly detecting the connection is even
challenging for human eyes. Thus, we hypothesize that a more complex machine learning model, such as deep learning,
would be able to identify the hidden connections especially using 2D images as input data. We developed our model
with four branches for four image streams captured by each camera. Each branch consists of four 3 × 3 convolutional
blocks followed with 2 × 2 Max Pooling layer as shown in Fig.9. We then conduct late fusion by concatenating the
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Fig. 9. Deep Learning Model Structure

output of fully connected layer in each branch and add final fully connected layer to obtain the estimation of 14 joint
coordinates.

5.4.2 Model Training. Using the Adam loss function, our model is trained to predict 42 parameters (i.e., 14 joint points
× 3 coordinates (x, y, and z)). The training was stopped when a monitored loss had not improved using ten patience.
In addition, we reduced the learning rate (factor=0.2, patience=5, _lr=0.001) using five patience when the loss has
stopped improving, which works well when learning stagnates. We only kept the model that has achieved the best
performance before stopping. Our model is trained for an average 82.4 epochs (SD = 21.4) on different training sessions
for all experiments.

6 EVALUATION

6.1 Procedure

6.1.1 Participant. We recruited 9 participants (6 Male, Mean = 26.33, SD =5.39) from the university campus to evaluate
the system. All participants were right-handed and wore our hardware prototype on the left wrist.

6.1.2 User Study Procedure. Before data collection started, participants were asked to watch a tutorial video that
consisted of the researcher performing all 12 activities as shown in our design space (See. fig3). This helped participants
to get familiar with the activities they needed to perform. At the end of the training video, the researcher handed the
participant the 3D printed box filled with the raspberry pis and power sources and wrapped the Velcro portion of the
device on the left hand. After mounting the prototype on the participant, they were instructed to follow the video
instructions on the monitor to perform the 12 activities in four sessions.
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6.1.3 Data Collection. We have four sessions for data collection. In each session, participants were asked to perform 12
activities. We intentionally asked the participants to slowly perform these activities such that the depth camera could
capture the ground truth reliably. In the first session, the participants repeated each activity ten times. In the later three
sessions, the participants repeated each activity three times. All activities were randomly ordered.

The first session evaluated the system performance within the same session where the device was not remounted.
In the second session, we asked the participant to remount the wristband to evaluate how the performance would be
impacted after remounting. In the third session, the participants were asked to wear a different shirt to evaluate how
would BodyTrak perform if the cloth was different. In the fourth session, the participants performed the activities in an
outdoor setting to investigate how our system operates in outdoor environments where lighting and background vary.

6.2 Result

In this section, we reported the performance of BodyTrak in different settings, including without remounting, after
remounting, after changing the cloth, and outdoor environments. We used the images captured from all four cameras in
the following experiments.

6.2.1 Evaluation Matrix. We calculated the performance, i.e., accuracy, by taking the Euclidean distance between the
predicted 3D joints and the true value of the 3D joints from the ground truth and averaging over the sequence. This
distance is then scaled to centimeters (cm) based on each participant’s arm (Mean = 22.78 cm, SD = 1.4 cm). We report
an average mean error over all 14 body joints.

Moition
Type Avg Nose Ch RS RE RWr LS LE LWr RWa RK RA LWa LK LA

Average 6.34 1.95 0.00 1.12 9.44 14.97 1.18 9.16 13.52 5.36 6.46 6.87 5.65 6.41 6.71
Standing 4.21 1.37 0.00 0.74 7.00 10.12 0.91 5.43 6.18 4.12 4.05 4.49 4.04 4.44 4.55

Right Shoulder
Press 4.03 1.36 0.00 0.78 9.51 12.91 0.84 6.12 7.11 4.17 4.33 4.47 3.21 4.16 4.11

Left Shoulder
Press 4.26 1.60 0.00 0.89 5.61 8.12 0.83 7.01 10.45 3.88 4.43 4.44 3.85 4.28 4.38

Lateral Raise 4.59 1.65 0.00 0.83 7.06 11.17 1.05 7.64 11.50 4.15 4.71 4.86 4.09 4.57 4.96
Front Raise 4.76 1.57 0.00 0.98 7.20 12.80 1.03 8.08 12.39 4.01 4.75 5.01 4.21 5.11 5.02
Cross Arm 4.34 1.36 0.00 0.81 6.95 14.53 0.90 6.85 11.47 3.66 4.38 4.61 4.24 4.54 4.78
Boxing 5.26 1.76 0.00 1.20 11.29 15.41 1.07 10.31 12.66 4.85 5.39 5.64 5.08 5.01 5.47
Tennis 6.28 1.77 0.00 1.11 10.04 14.68 1.03 8.80 13.84 5.20 6.51 6.61 5.62 6.58 7.10
Kicking 6.76 1.80 0.00 1.04 7.19 12.55 1.05 8.19 12.94 5.63 7.84 9.59 6.14 6.67 7.53
Sitting 4.74 1.69 0.00 0.86 5.29 7.41 0.76 5.23 6.87 3.90 5.72 5.33 4.63 5.55 5.13
Squat 6.12 1.76 0.00 1.02 9.18 18.70 1.10 7.63 15.16 4.90 6.08 6.45 5.68 7.03 6.65

Walking 5.94 1.70 0.00 1.02 8.06 12.25 1.02 8.01 11.37 4.89 5.78 6.41 5.62 6.26 7.15
Stepping a Stair 7.19 1.86 0.00 1.03 8.59 13.43 1.24 9.20 13.35 5.30 7.56 7.91 6.03 7.46 7.75

Table 2. Results of Within Session Evaluation (cm). R: Right, L: Left; Ch: Chest, S: Shoulder, E: Elbow, Wr: Wrist, Wa: Waist, K: knee,
A: Ankle.

6.2.2 Within Session Evaluation. At first we conducted a within-session evaluation on BodyTrak using the data from
the first session as the training and testing data. Specifically, we used the first 8 instances of the 12 activities (based on
chronicle order) as the training data, and the last 2 instances as the testing data. Please note that the collected data was
not shuffled when splitting the training and testing set. The results show that BodyTrak achieved an average of 6.34 cm
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(SD = 0.61 cm), indicating that the body silhouettes captured using wrist-mounted cameras are informative to estimate
body pose as shown in Fig. 1.

Similar to other works [19, 34], the joints on the wrist and elbow showed the worst performance among all 14 body
joints. This is not surprising because the wrist and elbow have the largest moving distance compared to the body joints
on other parts. Furthermore, as we expected, the error in the positions of body joints on the right arm and wrist was
larger than on the left. Because the device was worn on the left, which naturally would capture more information of
the left half of the body. The detailed results were presented in Table 2.

6.2.3 Across-session Evaluation. In the second experiment, we evaluated how would BodyTrak perform when the
environment contexts changed, including remounting the device, changing the cloth, and outdoor environments.

In this experiment, the model was the same as the one used in within-session experiment, where the training data
set came from the first eight instances in the first session. The testing data came from the second (remounting), third
(change cloth), and fourth session(outdoor), respectively. The results showed that Bodytrak achieved a average accuracy
of 9.30 cm (SD = 1.07 cm), 11.16 cm (SD = 1.03 cm), and 12.33 cm (SD = 1.27 cm), respectively in these three testing
sessions. Although the overall accuracy was worse than within-session performance, it indicates the potential of
applying BodyTrak in real-world settings.

Fig. 10. Comparison on Performance between Across-session and Leave-one-session-out. In this figure the blue bars indicate the error
when data from the Across-session evaluation was included. The red bars indicate the error from Leave-one-session-out evaluation.
As demonstrated in this figure by including more data (i.e. Leave-one-session-out evaluation), our performance improved.

6.2.4 Leave-one-session-out Evaluation. One possibility on why the performance was worse across sessions is that
the training data was too small or limited. As a result, the model has not seen enough variance of the data in different
settings. In order to investigate this issue, we conducted the third experiment: Leave-one-session-out. We used 3 sessions
as the training data, and one session as the testing data. This process repeated four times, so that each session was used
as testing session once. The results showed that BodyTrak achieved an average accuracy of 9.30 cm (SD = 0.75 cm),
10.12 cm (SD = 1.17 cm) and 11.33 cm (SD = 1.11 cm), when session 2 (Remounting), for session 3 (Cloth) and session
4 (Outdoors) were used as testing sessions respectively. Compared to the second experiment, leave-one-session-out
improved the performance for around 1 cm in each session(See. Fig 10). It indicates that if a larger and more diverse
training data can be collected, the performance of BodyTrak can be further improved especially when it was used in
different settings. Table 3 summarized the result in detail.
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Evaluation Type Across-session Leave-one-session-out
Testing Session Session 2 Session 3 Session 4 Session 2 Session 3 Session 4

Avg. 9.30 11.16 12.33 9.30 10.12 11.33
Nose 2.62 2.96 3.70 2.78 2.96 3.28
Chest 0.00 0.00 0.00 0.00 0.02 0.00

Right Shoulder 1.39 1.66 2.21 1.57 1.75 2.17
Right Elbow 13.05 15.93 16.93 13.24 14.20 15.89
Right Wrist 23.03 27.03 28.94 22.61 24.03 26.94
Left Shoulder 1.64 1.75 2.23 1.75 1.77 2.08
Left Elbow 12.59 15.18 16.88 12.57 13.79 15.19
Left Wrist 20.00 24.67 27.37 18.83 20.84 23.85
Right Waist 7.63 8.35 9.99 8.00 8.29 9.33
Right Knee 9.64 11.26 12.25 9.50 10.41 10.92
Right Ankle 10.48 12.73 14.29 10.25 11.55 13.01
Left Waist 8.57 10.72 11.99 9.07 9.60 11.26
Left Knee 9.29 11.43 12.41 9.56 10.68 11.82
Left Ankle 10.26 12.63 13.37 10.43 11.82 12.88

Table 3. Results of User Study under different conditions

7 DISCUSSIONS

7.1 The impact of cameras settings

In our evaluation, we used four cameras to estimate fully 3D body poses. However, we would like to explore whether
fewer cameras can solve the problem in consideration of the real-world application, size, and battery capacity. Thus,
we further analyzed how the number of cameras has affected the performance. We used all possible combinations
of cameras to conduct within-session experiment and across-session experiments. The results (detailed in Table ??)
showed that camera #1 is the most informative camera. If only using the data from camera #1, the performance of
BodyTrak can still achieved an average accuracy of 6.9 cm in within-session experiment, compared to 6.3 cm using all
four cameras. Our interpretation is that camera 1 with a wide view angle, may covers in average more information
on the upper body and lower body. It shows that, it is possible to estimate the full body pose using just one camera,
which is significantly more practical than using four cameras. Because as we have discussed previously. some of the
existing commodity smartwatches already has a built-in camera. By slightly changing the position and orientation,
these built-in camera can potentially be repurposed to track full body poses.

7.2 User independent Model

The experiment above was all conducted using user-dependent models, where the training and testing data came from
the same participant. This means, a new user has to provide training data before using the technology, which may not
be preferred from the user experience perspective. Therefore, we conducted one more experiment to evaluate how
would BodyTrak was trained and tested using user-dependent models. Thus, we conducted a leave-one-participant-out
evaluation, where we used all data from 8 participants to train the model, and then using the session 2,3,4 as the testing
data respectively. This process repeated 9 times, so that each participant’s data was used as the testing data once. The
results showed that the average error of estimating 14 body joints positions were 11.37cm (SD = 1.47 cm), 11.70cm (SD
= 2.11 cm), 13.10cm (SD = 1.58 cm) for session 2,3 ,4 respectively. The performance was worse compared to the results
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from user-dependent models, which is expected. Because participants’ body shape, cloth, hair, are likely different from
each other, which leads to different body silhouettes even if the body pose is the same. However, the performance is also
encouraging, which indicates the possibility of building user-independent model in the future, especially if a significant
larger training data with more participants can be collected. Another possibility of addressing this issue is to generate
synthetic training data to simulate different body shapes, cloths, hairs and backgrounds, as demonstrated in [19]. This
would greatly improve the diversity in the training data without the need of collecting data from participants. We will
leave this to future investigation.

Evaluation Type Within Session Accross Session
Setting Camera Session 1 Session 2 Session 3 Session 4

One Camera

c#1 6.90 11.74 12.92 13.49
c#2 6.89 13.37 13.50 14.53
c#3 7.25 12.91 13.41 15.11
c#4 7.41 14.05 14.42 14.42

Two Cameras

c#1, c#2 6.69 12.25 13.03 13.80
c#1, c#3 6.82 10.68 11.98 14.27
c#1, c#4 6.99 12.65 13.03 14.27
c#2, c#3 6.79 10.84 13.05 13.05
c#2,c#4 6.98 11.49 13.48 13.48
c#3,c#4 7.25 13.90 14.69 14.69

Three Cameras

c#1,c#2,c#3 6.46 11.79 12.80 13.64
c#1,c#2,c#4 6.51 10.51 12.12 12.94
c#1,c#3,c#4 6.63 10.02 11.59 12.71
c#2,c#3,c#4 6.63 13.17 13.71 14.10

Four Cameras c#1,c#2,c#3,c#4 6.34 9.30 11.16 12.33
Table 4. The Impact of Camera Settings

7.3 Real World Application

As the development of commercial smartwatches with cameras such as WristCam6, it is possible that our system can
be integrated into a commercial smartwatch in the future. In this section, we discuss several concerns regarding the
deployment of our system in real life. These topics are divided into the future areas of application for BodyTrak and the
hardware considerations for deploying this system.

7.3.1 Areas of Application. By using 3D body reconstruction in a smart watch we can get important information
about the behavior we exhibit in daily activities. Namely, this technology can improve individual fitness performance
analysis by examining the energy we expend in our workout routines [5]. Posture is also important in a variety of
sports such as swimming [46], running[42], and soccer [24]. The incorporation of 3D body pose estimation in a smart
watch contributes to greater mobility to track these types of activities, helping people in the process of improving
their athletic performances. Alongside workouts, the development of a smartwatch that can estimate our body posture
can inform us about our posture while performing activities in the environment we are regularly exposed to. Such
information can guide us to decide what shoes to wear for a specific walking route, or how much weight we can
hold onto while performing blue collar work until our posture begins to worsen. To build on this point, the future
6https://www.wristcam.com/
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of smartwatches and 3D body estimation reflects a future of precision in personalized health informatics. Moreover,
3D body estimation is making its way into commercial industries with products like Vicon [32], which can monitor
3D body posture and provide bio mechanic analyses, and the WristCam [47] which enables users to video record
using either of the two cameras. 3D Posture estimation in smart watches may also potent ally help us care for elderly
individuals in emergency situations by recognizing uncommon body postures [35]. The ubiquity of smartwatches
presents a tremendous opportunity for companies to use 3D body posture technology to develop the next generation of
wrist-mounted device, which is novel, personalized experiences for users.

7.3.2 Hardware Considerations. One important challenge of deploying BodyTrak on a commodity smartwatch is how
to integrate the hardware into the smartwatch in a battery sustainable manner. In our prototype, we implement the
system with Raspberry Pi Zero and RGB cameras. The no-load power consumption of Raspberry Pi Zero is about 80
mA (0.4W) and 140 mA for camera module in video mode measured by PowerJive USB Power Meter [3]. With further
optimization of the power consumption by using a customized board, the power consumption is more managable,
especially if only using one camera.

In terms of computational burden, we recorded the images and then offline processed all data on a workstation in
our study. However, moving forward, the implementation of our system can be altered by considering by applying one
of following settings. The first option is to transmit all data to a cloud or remote server using wireless communication
methods such as WiFi. The major issue in this setting is the data transmission speed and computation power of
cloud/remote computing. The second option is to deploy the machine learning model on the edge device such as a
smartphone. With the advancement of smartwatch processors and GPUs, faster predictions on edge devices is possible
in the future.

7.4 Privacy Issue

A wearable camera will always raise concerns about privacy. In BodyTrak, as the cameras mostly point towards the
user’s body and do not directly capture the user’s face, the images are arguably less sensitive. However, the cameras can
still occasionally capture sensitive information of the user or the people around. To address this issue, one solution is to
extract features on the fly. Instead of saving the raw RGB images, we can only segment the images on the device (e.g.,
smartphone), containing only the body silhouettes. In this case, even if the deep learning model is trained or running on
the cloud, transmitting the segmented images would not contain much of the sensitive private information of the user.

7.5 Limitations and future work

BodyTrak has demonstrated the feasibility of 3D full-body reconstruction using awristband, showing a good performance
over the different scenarios. However, there is just the first step towards a smartwatch that can track full body poses in
the free-living conditions. There are apparent room for improvements.

First, our training data set is relatively small. If a larger dataset with diverse users and activities, the performance of
the system is likely to be improved, especially across sessions, and in user-independent models.

Second, the current model is a CNN. Given the body posture contains rich temporal information. A time-series deep
learning model, i.e., LSTM, can potentially further improve the performance.

Third, if we add IMU data on the wristband (also widely available on smartwatches), using fusing the data from IMU
and cameras, can potentially further improve the estimation performance.
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Lastly, the ground truth acquired by RealSense depth camera was overall stable. However, it still includes errors and
noise occasionally. If we have a more accurate and reliable ground truth, the performance can potentially be improved
too. Besides, using depth camera as the ground truth acquisition method also limited the activities that the participants
can perform. For instance, the participants can not actually walk or run in large distance. Otherwise the depth camera
would not capture the full body images, which lead to inaccurate estimation of body poses.

8 CONCLUSION

This paper presents BodyTrak, the first AI-powered wristband that can continuously estimated the full body poses
including the 3D positions of 14 body joints on legs, head, arms and torso. It utilizes four RGB cameras wearing on the
wrist to capture the body silhouettes, which are learned by a customized deep learning model to infer the full body
poses. A user study with 11 participants demonstrated that it estimate the full body poses, with an average of 6.34 cm
error over 14 body joints using four cameras and 6.89 cm using only one camera. Based on the study results, we discuss
the opportunities and challenges associated with deploying our system and implementing it in real-world scenarios.
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